Đồ hoạ máy tính - Các phép biến đổi trong đồ hoạ 3 chiều
Số trang: 16
Loại file: doc
Dung lượng: 1.62 MB
Lượt xem: 2914
Lượt tải: 0
Thông tin tài liệu
Đồ hoạ máy tính - Các phép biến đổi trong đồ hoạ 3 chiều
CHƯƠNG 6
CÁC PHÉP BIẾN ĐỔI TRONG ĐỒ HỌA BA CHIỀU
Các phép biến đổi trong đồ họa ba chiều là sự mở rộng của các phép biến đổi trong đồ họa hai chiều bằng cách thêm vào việc xem xét tọa độ thứ ba, tọa độ z. Bây giờ, chúng ta sẽ tịnh tiến một đối tượng thông qua việc mô tả một vector tịnh tiến ba chiều. Vector này xác định độ dời của vật theo ba chiều trong không gian. Tương tự như vậy, ta có thể thu phóng đối tượng với các tỉ lệ biến đổi theo cả ba chiều. Sự mở rộng của phép quay ít hiển nhiên hơn hai phép biến đổi cơ sở trên. Khi khảo sát các phép quay trong mặt phẳng hai chiều Oxy, ta chỉ cần khảo sát phép quay quanh một tâm, hay nói cách khác, phép quay quanh một trục vuông góc với mặt phẳng Oxy. Trong không gian ba chiều, ta có thể chọn một trục quay có phương bất kì. Phần lớn các hệ đồ họa xử lí phép quay trong không gian ba chiều như là tổ hợp của ba phép quay với trục quay là các trục tọa độ x, y và z. Như vậy, người dùng có thể dễ dàng xây dựng một phép quay bất kì bằng cách mô tả trục quay và góc quay.
Cũng như khi trình bày các phép biến đổi trong đồ họa hai chiều, trong chương này, ta sẽ khảo sát các phép biến đổi trong đồ họa ba chiều dưới dạng ma trận. Một chuỗi bất kì các phép biến đổi sẽ được biểu diễn bằng một ma trận duy nhất là tích của các ma trận tương ứng với các phép biến đổi thành phần.
Xem thêm
CHƯƠNG 6
CÁC PHÉP BIẾN ĐỔI TRONG ĐỒ HỌA BA CHIỀU
Các phép biến đổi trong đồ họa ba chiều là sự mở rộng của các phép biến đổi trong đồ họa hai chiều bằng cách thêm vào việc xem xét tọa độ thứ ba, tọa độ z. Bây giờ, chúng ta sẽ tịnh tiến một đối tượng thông qua việc mô tả một vector tịnh tiến ba chiều. Vector này xác định độ dời của vật theo ba chiều trong không gian. Tương tự như vậy, ta có thể thu phóng đối tượng với các tỉ lệ biến đổi theo cả ba chiều. Sự mở rộng của phép quay ít hiển nhiên hơn hai phép biến đổi cơ sở trên. Khi khảo sát các phép quay trong mặt phẳng hai chiều Oxy, ta chỉ cần khảo sát phép quay quanh một tâm, hay nói cách khác, phép quay quanh một trục vuông góc với mặt phẳng Oxy. Trong không gian ba chiều, ta có thể chọn một trục quay có phương bất kì. Phần lớn các hệ đồ họa xử lí phép quay trong không gian ba chiều như là tổ hợp của ba phép quay với trục quay là các trục tọa độ x, y và z. Như vậy, người dùng có thể dễ dàng xây dựng một phép quay bất kì bằng cách mô tả trục quay và góc quay.
Cũng như khi trình bày các phép biến đổi trong đồ họa hai chiều, trong chương này, ta sẽ khảo sát các phép biến đổi trong đồ họa ba chiều dưới dạng ma trận. Một chuỗi bất kì các phép biến đổi sẽ được biểu diễn bằng một ma trận duy nhất là tích của các ma trận tương ứng với các phép biến đổi thành phần.
Gợi ý tài liệu cho bạn
Gợi ý tài liệu cho bạn
-
Bài tập Xác suất thống kê đại học - có lời giải
150 0 0 -
134 0 0
-
[Mẫu đơn] Cam kết bổ sung chứng chỉ, bằng cấp ứng tuyển vào ngân hàng Vietcombank
545 3 0 -
283 1 0